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Magnetoconvection of an electrically conducting fluid in a square cavity with partially thermally active
sidewalls is investigated numerically. Temperature of one of the thermally active regions of the side walls
is periodic in time while the opposite wall is isothermal. The horizontal walls and the remaining parts of
the side walls are thermally inactive. Nine different combinations of the relative positions of the active
zones are considered. The governing equations are discretized by the control volume method with QUICK
scheme and solved numerically by SIMPLE algorithm for the pressure–velocity coupling together with
under relaxation technique. The tests were carried out for various values of amplitude, period, Grashof
number, Hartmann number and Prandtl number. The heat transfer characteristics are presented in the
form of streamlines, isotherms and velocity profiles both for transient and steady state. It is observed that
the flow and the heat transfer rate in the cavity are affected by the sinusoidal temperature profile and by
the magnetic field at lower values of Grashof number. The rate of heat transfer oscillates for increasing
periods but it is maximum for X = 3 and it is found to be an increasing function of amplitude but
decreases for higher values of Hartmann number. The heat transfer rate is maximum for the middle–mid-
dle thermally active locations while it is poor for the top heating and bottom cooling active locations. The
average Nusselt number decreases with an increase of Hartmann number and increases with increase of
Prandtl number and Grashof number.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetoconvection in a cavity with time periodic thermal
boundary conditions has many applications in industry, crystal
growth techniques, space applications, etc. Unwanted convective
flows can significantly be suppressed by applying an external mag-
netic field. Extensive studies have been made in recent years to
examine the effects of magnetic field on the flow structure. Lage
and Bejan [1] studied theoretically and numerically natural con-
vection in a two-dimensional square cavity with one side cold
and isothermal and the other side heated with pulsating heat flux.
They observed that at sufficiently high Rayleigh number where
convection is the heat transfer mechanism, the buoyancy-driven
flow has the tendency to resonate to the periodic heating that is
being supplied from the side.

Rudraiah et al. [2] investigated the effect of a magnetic field on
free convection in a rectangular cavity. They found the effect of
magnetic field is to decrease the rate of heat transfer. Kwak et al.
[3] investigated the natural convection of an incompressible fluid
in a square cavity having a hot sidewall with sinusoidally varying
temperature. They found that the flow resonates with the internal
ll rights reserved.

: +91 422 2422387.
swamy).
gravity wave oscillations. Kandaswamy and Kumar [4] studied the
natural convection of water near its density maximum in the pres-
ence of a uniform magnetic field. They observed that the effect of
magnetic field on the natural convection is to inhibit the heat
transfer rate. Oosthuizen and Paul [5] studied the natural convec-
tion flow in a square cavity with one of the vertical walls having
two separate heating sections with spatially uniform but vary sinu-
soidally with time. They observed the flow to be essentially psue-
do-steady for the dimensionless periods higher than 0.02 and
periodic for dimensionless times greater than 0.4.

Kim et al. [6] studied the buoyant convection with internal heat
generation under oscillating sidewall temperature of a cavity. They
found that the secondary peak resonance is deducted for higher
internal Rayleigh number. Saeid [7] numerically studied natural
convection in a porous cavity with bottom wall heated with spatial
sinusoidal temperature variation while the vertical walls are adia-
batic. It is found that the average Nusselt number increases when
the amplitude of the temperature variation increase. Crunkleton
et al. [8] investigated the numerical simulation of periodic flow
oscillation for low Prandtl number fluids in rectangular cavity.
They found non-periodic flows for rectangular cavity with aspect
ratio 2.0. Nithyadevi et al. [9] investigated the natural convection
in a square cavity with partially thermally active side walls with
periodic time variations. They found that the average heat transfer
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Nomenclature

Alphabetics
a amplitude
A dimensionless amplitude
B0 magnetic field
g acceleration due to gravity
Gr Grashof number
Ha Hartmann number
L length of the cavity
Nu local Nusselt number
Nu average Nusselt number
p pressure
Pr Prandtl number
t dimensional time
T dimensionless temperature
u, v velocity components
U, V dimensionless velocity components
x, y dimensional coordinates

X, Y dimensionless coordinates

Greek symbols
a thermal diffusivity
b coefficient of thermal expansion
l dynamic viscosity
m kinematic viscosity
h temperature
q density
re electrical conductivity of the medium
s dimensionless time
x dimensional period
X dimensionless period

Subscripts
c cold wall
h hot wall
o reference state
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increases for increasing amplitude and for periods 1 and 5 and de-
creases for period 3.

Bilgen and Ben Yedder [10] studied the natural convection in a
cavity with heating and cooling by sinusoidal temperature profiles
on one sidewall and observed that the heat transfer is higher when
the heated section is in the lower half of the cavity at high Rayleigh
number. Cheikh et al. [11] investigated numerically the effect of as-
pect ratio on natural convection flow in a cavity submitted to peri-
odic temperature boundary. For low values of period of the hot
wall temperature, the amplitude became nearly constant at the
cold wall. By increasing the period, the amplitude of the Nusselt
number at the cold wall also increased until reaching the same va-
lue as the one at the hot wall.

Natural convection in a rectangular cavity with partially active
vertical walls numerically studied by Nithyadevi et al. [12]. They
showed that no remarkable change in the heat transfer rate is ob-
served when the heating location is changed for a fixed cooling
location. The heat transfer rate is enhanced when a cooling location
is at the top of the cavity. Natarajan et al. [13] reported two-dimen-
sional laminar natural convection flows in a trapezoidal cavity
with uniform and non-uniform heating wall. The found that the
non-uniform heating exhibits greater heat transfer rates at the cen-
ter of the bottom wall than with uniform heating case for all Ray-
leigh number regimes.

Recently, a study of magnetoconvection in a cavity with par-
tially active vertical walls was conducted by Kandaswamy et al.
[14]. They showed that the heat transfer rate is maximum for
the middle–middle thermally active locations while it is poor
for the top–bottom thermally active locations. The average Nus-
selt number decreases with an increase of Hartmann number
and increases with an increase of Grashof number. The present
work deals with the effect of magnetic field on the flow and
heat transfer in a square cavity with partially thermally active
vertical walls with time periodic boundary conditions. In this
study Hartmann number is varied from 0 to 100, Grashof num-
ber from 104 to 106 and Prandtl number from 0.054 to 2.05
with nine different relative positions of the thermally active
locations.
O 

L 

x 

Fig. 1. Physical configuration.
2. Mathematical formulation

The unsteady two-dimensional natural convection flow in a
square cavity of length L filled with an electrically conducting fluid
is considered as shown in Fig. 1. A portion of the right wall is kept
at a temperature hc and a portion of the left wall temperature is
maintained periodic in time. The remaining boundaries of the cav-
ity are thermally insulated. For nine different combinations of the
thermally active locations (the hot region moving from top to bot-
tom of the left wall and the cold region moving from bottom to top
of the opposite wall) the heat transfer characteristics are investi-
gated. The gravity acts vertically downwards. The uniform external
magnetic field B0 is applied parallel to gravity. It is assumed that
the induced magnetic field is negligible compared to the applied
magnetic field. Under the above assumptions, the conservation
equations of mass, momentum and energy in a two-dimensional
Cartesian coordinate system are
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The appropriate initial and boundary conditions are:

3.03
t = 0:
 u = v = 0,
 h = hc,
 0 6 x 6 L,
 0 6 y 6 L,

3.01
t > 0:
 u = v = 0,
 @h

@y ¼ 0,
 y = 0 and L,
 0 6 x 6 L,

h = hh(1 � asin(2pt/x))
 on the hot part,
 x = 0,
2.99
h = hc,
 on the cold part,
 x = L,

@h
@x ¼ 0,
 x = 0 and L,
 0 6 y 6 L.
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Fig. 2. Average Nusselt number for different grid sizes, middle–middle active walls,
A = 0, X = 0 and Gr = 105.
where x and a are the period and amplitude of oscillation of the hot
wall temperature.

Introducing the following non-dimensional variables

s ¼ t

L2=m
; ðX; YÞ ¼ ðx; yÞ

L
; ðU;VÞ ¼ ðu;vÞ

m=L
;

T ¼ h� hc

hh � hc
; with hh > hc

The non-dimensional form of Eqs. (1)–(4) are obtained as,
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The initial and boundary conditions in the dimensionless form
are:
s = 0:
 U = V = 0,
 T = 0,
 0 6 X 6 1,
 0 6 Y 6 1,

s > 0:
 U = V = 0,
 @T

@Y ¼ 0,
 Y = 0 and 1,
 0 6 X 6 1,

T = 1 � A sin(ps/X),
 hot part
 @T

@X ¼ 0,
 X = 0,

T = 0,
 cold part
 @T

@X ¼ 0,
 X = 1,

@T
@X ¼ 0,
 X = 0 and 1,
 0 6 Y 6 1.
Table 1
Comparison of average Nusselt numbers for different Rayleigh number, Pr = 0.71 and
Ha = A = X = 0.

Ra Nu

Davis [17] Bairi [18] Present

103 1.116 1.112 1.119
104 2.234 2.168 2.259
105 4.487 4.228 4.518
106 8.811 8.243 8.851
The non-dimensional parameters that appear in the equations
are, Gr ¼ gbðhh�hcÞL3

m2 Grashof number, Ha2 ¼ B2
o L2re
l Hartmann number,

2X period and Pr ¼ m
a Prandtl number. The local Nusselt number is

defined by Nu ¼ @T
@X

��
Y¼0 resulting in the average Nusselt number as

Nu ¼
R

h NudY , where h ¼ L
2 is height of heating location.

3. Method of solution

The governing Eqs. (5)–(8) are discretized by control volume
method and solved by SIMPLE algorithm Patankar [15]. The dis-
cretized form of the Eq. (6) can be written as

/P � /0
P
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where S/(X,Y) is source term.
The third order accurate deferred QUICK scheme of Hayase

et al. [16] is employed to minimize the numerical diffusion
for the convective terms to the discretized Eq. (9) to obtain
the form

aP/
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where
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8
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bP ¼bE þ bW þ bN þ bS þ bEE þ bWW þ bNN þ bSS þ a0
P:

The resulting set of discretized equations for each variable are
solved by a line-by-line procedure, combining the tri-diagonal ma-
trix algorithm (TDMA). Under relaxation technique is employed for
the pressure correction. The mass balance for global convergence is
taken as 10�7.

Uniform staggered grid system is employed in the present
study. The numerical solutions presented in this paper are acquired
using 51 � 51 grid system. Further increase in the number of grids,
produced essentially the same results as seen in Fig. 2. Accuracy of
the numerical procedure is first validated by comparing the pre-
dicted results with the bench mark solutions of Davis [17] and
the experimental investigation of Bairi [18]. The results are given



             
  

             

             
 

              

              
 

              

Fig. 3. (a–i) Streamlines and isotherms for nine combinations of active walls for Gr = 105, Pr = 0.71, Ha = 10, A = 0.4, X = 3.

1948 N. Nithyadevi et al. / International Journal of Heat and Mass Transfer 52 (2009) 1945–1953



N. Nithyadevi et al. / International Journal of Heat and Mass Transfer 52 (2009) 1945–1953 1949
in Table 1 and we can see that the present values of average Nus-
selt number are in good agreement with those obtained by various
authors. We are, therefore, confident that the results reported in
our paper are accurate.

4. Results and discussion

The magnetoconvection of an electrically conducting fluid in a
square cavity is studied numerically for nine different combina-
tions of thermally active locations. The computations are carried
out for various values of the Grashof number from 104 to 106, Hart-
mann number from 0 to 100, Prandtl number from 0.054 to 2.05,
amplitude from 0.2 to 0.6 and period from 1 to 5, of the time peri-
odic hot zone.

Fig. 3a–i depicts the streamlines and isotherms for Gr = 105,
A = 0.4, X = 3, Ha = 10 and Pr = 0.71 for different combinations of
the active locations. As the left top active location is at a higher
temperature the adjoining fluid particles gets heated up, undergo
the drop in their densities and raise above their mean level and tra-
vel to the right active cold location and produces a clockwise rotat-
ing cell within which two smaller clockwise rotating cells due to
the same reasoning appear with a small stagnant region between
them avoiding shear instability. The flow and the temperature field
are symmetric with respect to the plane Y = 0.5 (see Fig. 3a).

As the cold location is moved to the middle and top positions
the hot cell is squeezed and disappears to produce elongated single
cell pattern. The corresponding isotherms indicate convective
mode of heat transfer at the active regions in Fig. 3b and c . In
the middle heating position the initial single cell formation splits
into dual cells within the larger flattened cell in Fig. 3d–f. The cor-
responding isotherms in Fig. 3d–f shows that convective mode pre-
vails everywhere inside the cavity with a thin thermal boundary
layer at the middle–top active locations.

In the bottom heating location in Fig. 3(g–i) and the reversal of
the top hot–bottom cold case prevails but for the thick thermal
boundary layer formation. The convective regime is well estab-
lished in this case. Fig. 4(a–d) and exhibit the streamlines and iso-
therms for the top hot–bottom cold active locations with A = 0.4,
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Fig. 4. (a–d) Streamlines and isotherms for top–bottom active wal
Gr = 105, Ha = 10, Pr = 0.71 and X varying as 1, 2, 4 and 5. As the
period increases the unicellular pattern turns out to be multicellu-
lar and the dual cells separate the flow at the core as seen in Fig. 4d
at X = 5. The corresponding isotherms exhibit clearly the convec-
tive mode of heat transfer within the cavity except at the core.

Fig. 5(a–l) indicate the streamlines and the isotherms for X = 3,
Gr = 105, Pr = 0.71, A = 0.2, 0.4 and 0.6, for the bottom hot–top cold
active locations. The flow starts with a major convective cell with
tiny inner cells. As the Hartmann number increases they develop
to form a conductive regime is established with the two inner cells
enlarged and fully developed at the center of the cavity as in
Fig. 5(a–l). The isotherms Fig. 5(a–l) indicate that the warm fluid
confined to the boundary layer is entrained to the whole cavity
yet convection is retarded by the increase in the applied magnetic
field. This is clear from the almost parallel, straightened horizontal
isotherms, reflecting nearly conductive mode of heat transfer with-
in the cavity which is also quantitatively observed from Table 2.

Fig. 6 illustrates the transient results of streamlines and iso-
therms for Gr = 105, Ha = 10, Pr = 0.71, X = 3, A = 0.4 and for bottom
hot–top cold active locations. In the initial stage a small amount of
fluid near the hot region is activated. For s = 0.002 a small clock-
wise rotating hot cell appears near the bottom heating locations
and the isotherms are almost parallel lines. They indicate conduc-
tion mode of heat transfer. At times 0.008 and 0.016 the clockwise
rotating cell grows in size, moves slightly away from the boundary
and expands, while the isotherms become parabolic and spreads to
more than half of the cavity. When s = 0.032 and 0.064 the convec-
tive cell has moved to the center, elongated to elliptic shape and
occupies the entire cavity. The corresponding isotherms have
reached the right side top cooling location which are tilted at the
core region. As s increases further to 0.128 and 1.024 the inner cell
splits into two and the streamlines are suppressed horizontally, the
isotherms at the core become horizontal and the thermal boundary
layer is well established showing the development of the convec-
tive mode of heat transfer.

Fig. 7 indicates the time history of the mid-height velocity pro-
files for the transient state for Gr = 105, Ha = 10, Pr = 0.71, X = 3,
A = 0.4 and for bottom hot–top cold active locations. Initially the
1.
12

16
6

0.972107

0.822552

0.672997

0.523442

0.373887

0.224332

0.
07

47
77

5

1.
21

82
3

1.0558

0.893366

0.730936

0.568506

0.406076

0.243645 0.
08

12
15

1

              c                                 d             
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Fig. 5. (a–l) Streamlines and isotherms for bottom–top active walls, different Ha, different A, X = 3, Pr = 0.71 and Gr = 105.
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Table 2
Effect of Grashof number and Hartmann number on average Nusselt number,
horizontal and vertical velocities for bottom–top active location, A = 0.4, X = 3,
Pr = 0.71 and Ha = 10.

Gr Ha Umax Vmax Avg. Nu

104 0 18.53 22.48 4.001632
10 12.90 16.67 3.511169
50 1.59 2.56 1.908844

100 0.36 0.92 1.861611

105 0 49.02 89.90 7.670641
10 45.28 78.01 7.568953
50 17.28 33.10 4.736051

100 5.31 11.21 2.329440

106 0 185.25 319.14 15.376016
10 140.78 316..40 15.275935
50 62.73 222.49 15.110399

100 49.25 146.03 11.978464
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velocity increases only near the hot location, when time evolves
the temperature of the fluid particles near the cold location also in-
creased and the velocity curves coincide once the steady state is
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Fig. 6. Time history of streamlines and isotherms for bottom–to
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Fig. 7. Time history of mid-height velocity profile for bottom–top active walls,
Pr = 0.71, A = 0.4, X = 3, Ha = 10 and Gr = 105.
reached. The variation in the average Nusselt number for the in-
crease in Prandtl number are shown in Fig. 8 for different heating
locations, for Ha = 10, Gr = 105, X = 3 and A = 0.4. The rate of in-
crease is high in the range Pr = 0.054–0.71. It is also observed that
in the middle–middle active locations the heat transfer rate is
more than in the other cases.

Fig. 9 presents the variation of the average Nusselt number with
Hartmann numbers for different values of X, Gr = 105, A = 0.4,
Pr = 0.71 and for the bottom hot–top cold active locations. The
average Nusselt number reduces significantly as the Hartmann
number increases. As X increases the average Nusselt number
oscillates. The effect is found to be maximum for X = 3 and less
for all other cases.

Fig. 10 shows the variation of the average Nusselt number with
Hartmann numbers for various values of amplitude A and Gr = 105,
X = 3, Pr = 0.71 and for the bottom hot–top cold active locations. As
A increases the average Nusselt number also increases for lower
values of Hartmann number. But as Hartmann number increases,
the rate of heat transfer is sharply reduced. Fig. 11 indicates the
variations of the average Nusselt number with Grashof number
for several values of Ha. The effect of magnetic field on the average
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Ha = 10.
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Nusselt number is more in the lower Grashof number region. At
higher Grashof number values, as convection is dominant the
reduction in heat transfer due to magnetic field is insignificant ex-
cept for Ha = 100.

Fig. 12 shows the vertical velocity profiles at mid-height for var-
ious values of Grashof number, X = 3, A = 0.4, Ha = 10, Pr = 0.71 for
bottom hot–top cold active positions. The flow is invigorated for
Gr = 106 but suppressed for 104.

Fig. 13 exhibits the vertical velocity profiles at mid-height for
periods from 1 to 5. As period increases the velocity profiles oscil-
late and attains extreme values for X = 3 for the bottom hot–top
cold active positions. The increase in Ha reduces the peaks near
the active walls as seen in Fig. 14 for Gr = 105, X = 3, A = 0.4 for bot-
tom hot–top cold active locations, showing that the convective
mode of heat transfer is transformed to conductive mode.
Fig. 15 shows the steady state average Nusselt number varia-
tions for Gr = 105, X = 3, A = 0.4, Ha = 10, Pr = 0.71 and for bottom
hot–top cold active locations. There is a sudden drop in the value
of the average Nusselt number in the initial stage. When the steady
state is reached the average Nusselt number oscillates steadily and
asymptotically.

5. Conclusion

In this study numerical results of magnetoconvection in a
square cavity subjected to sinusoidal temperature boundary condi-
tions on the heating location of one of the side walls are presented.
Liquid metals (Pr = 0.054) is used as a coolant in nuclear reactors
for thermodynamics systems. It is observed that the heat transfer
rate is enhanced in the middle–middle thermally active locations.
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Ha = 10, X = 3 and Gr = 105.
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The average Nusselt number increases with increase in Prandtl
number and Grashof number and decreases with Hartmann num-
ber. The rate of heat transfer and vertical velocity oscillates for
increasing amplitudes but it is maximum for X = 3 and increases
for increase in period. As A increases the average Nusselt number
also increases for lower values of Hartmann number. But as Hart-
mann number increases, the rate of heat transfer is sharply
reduced. The flow is invigorated for Gr = 106 but suppressed for
104. In the steady state the rate of heat transfer resonates to the
periodic temperature at the hot region. For sufficiently large mag-
netic field Ha = 100 the convective mode of heat transfer is con-
verted into conductive mode.
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